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Abstract

This paper illustrates the application of evolutionary algorithms (EAs) to the problem of oblique
decision tree induction. The objectives are to demonstrate that EAs can find classifiers whose
accuracy is competitive with other oblique tree construction methods, and that, at least in some
cases, this can be accomplished in a shorter time. We performed experiments with a (1+1) evolution
strategy and a simple genetic algorithm on public domain and artificial data sets, and we compared
the results with three other oblique and one axis-parallel decision tree algorithms. The empirical
results suggest that the EAs quickly find competitive classifiers, and that EAs scale up better
than traditional methods to the dimensionality of the domain and the number of instances used in
training. In addition, we show that the classification accuracy improves when the trees obtained
with the EAs are combined in ensembles, and that sometimes it is possible to build the ensemble
of evolutionary trees in less time than a single traditional oblique tree.

1. Introduction

Decision trees (DTs) are popular classification methods, and there are numerous algorithms to
induce a tree classifier from a data set (Murthy, 1997). Most of the tree inducing algorithms
create tests at each node that involve a single attribute of the data. These tests are equivalent to
hyperplanes that are parallel to one of the axes in the attribute space, and therefore, the resulting
trees are called axis-parallel. These simple univariate tests are convenient because a domain expert
can interpret them easily, but they may result in complicated and inaccurate trees if the data is
more suitably partitioned by hyperplanes that are not axis-parallel. Oblique decision trees use
multivariate tests that are not necessarily parallel to an axis, and in some domains may result
in much smaller and more accurate trees. However, oblique trees are not as popular as the axis-
parallel trees because the tests are harder to interpret, and the oblique inducers require greater
computational resources than the axis-parallel algorithms.

Evolutionary algorithms (EAs) are stochastic search methods based on the mechanics of natural
selection and genetics. The purpose of this paper is to illustrate the application of EAs to the task
of oblique decision tree induction. The objectives are to show that evolutionary optimization may
result in classifiers whose accuracy is competitive with other oblique tree construction methods, and
that this can be accomplished in shorter time, at least in some cases. The results of our experimental
study suggest that the EA-augmented inducers can quickly find competitive classifiers, and that
they scale up better than traditional oblique DT inducers to the size of the training sets and to
the number of attributes that describe each instance. In addition, we demonstrate how combining
multiple oblique trees in ensembles improves the classification accuracy, and that sometimes the
ensembles can be built faster than a single oblique tree with existing algorithms.

This paper extends our previous work (Cantú-Paz & Kamath, 2000) in several ways: the exper-
iments use additional data sets and we perform additional experiments to evaluate the scalability
of the algorithms (both on the size and dimensionality of the data); we extended significantly our
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review of previous work; we compare the results against an additional oblique decision tree algo-
rithm that is our variation of an existing algorithm (our version seems to perform better than the
original); and we introduce new ways to create ensembles by randomizing the instances used at
each node and by using the evolutionary algorithms.

The paper is organized as follows. The next section provides a brief background on oblique
decision trees and a review of relevant previous work. Section 3 describes some of the advantages
of using EAs to find splits in oblique DTs and our approach to this problem. Section 4 has
experimental results that illustrate the advantages of the evolutionary approach using public domain
and artificial data sets. Finally, Section 5 has a brief summary and the conclusions of the paper.

2. Oblique Decision Trees

The task of any DT inducer is to use the information contained in a training set of labeled instances
to create a model that predicts the class of unseen instances. In this paper, we consider that the
instances take the form (x1, x2, ..., xd, cj), where the xi are real-valued attributes, d is the number
of attributes, and cj is a discrete value that represents the class label of the instance. As mentioned
in the introduction, most tree inducers consider tests of the form xi > k that are equivalent to
axis-parallel hyperplanes in the attribute space. The task of the inducer is to find the best values
for i and k. Most tree-building algorithms evaluate the candidate hyperplanes using the impurity
of the split defined by the hyperplane. Many impurity measures have been proposed, such as the
information gain (Quinlan, 1986), the Gini index, or the twoing rule (Breiman et al., 1984). Each
impurity measure has its own advantages and disadvantages (Murthy, 1997), and each defines a
different optimization problem.

In this paper, we consider more general tests of the form
d∑

i=1

aixi + ad+1 > 0, (1)

where the ai are real-valued coefficients. In this case, the task of the inducer is much harder than
before, because it involves searching in a (d + 1)-dimensional space. Finding the best oblique tree
is an NP-complete problem (Heath, Kasif, & Salzberg, 1993), and therefore existing oblique DT
inducers use a heuristic to find appropriate values for the coefficients of the hyperplane.

Several early attempts to build oblique decision trees used some form of feature construction.
The first work in this area appears to be that of Henrichon and Fu (1969). They proposed an axis-
parallel algorithm that may be complemented at the user’s discretion by a feature construction
algorithm that at each tree node adds linear combinations of the existing features. Henrichon
and Fu proposed several methods to construct the new features, such as using a linear discriminant
function or projecting the instances onto the direction of the eigenvector associated with the largest
eigenvalue of the covariance matrix (the first principal component). Friedman (1977) introduced a
similar feature construction algorithm. One of the methods he proposed was to add a feature by
projecting the examples under consideration on the hyperplane given by Fisher’s linear discriminant.
One difference with the previous system is that the new features become available for the remainder
of the induction process. Gama (1997) implemented an almost identical procedure to Friedman’s.
Iyengar (1999) introduced an iterative procedure for feature construction that attempts to identify
promising oblique directions on which to partition the data. On each iteration, an entire (axis-
parallel) tree is built and the training set is extended with new oblique features, which are based
on the vectors that connect the centroids of promising pairs of leaf nodes. In all of the systems
described above, the axis-parallel tree inducer remains unchanged, but new oblique features are
added.
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Breiman, Friedman, Olshen, and Stone (1984) introduced CART with linear combinations
(CART-LC) as an option in their popular decision tree algorithm CART. At each node of the
tree, CART-LC iteratively finds locally optimal values for each of the ai coefficients. Hyperplanes
are generated and tested until the marginal benefits become smaller than a constant. Recogniz-
ing that the oblique splits are harder to interpret than a simpler univariate split, Breiman et al.
used a backward deletion procedure to simplify the structure of the split by weeding out variables
that contribute little to the effectiveness of the split. The iterative simplification procedure deletes
one variable at a time until no further variables can be deleted, and the coefficient optimization
algorithm is executed anew on the remaining variables.

Loh and Vanichsetakul (1988) used a modified linear discriminant function on the principal
components of the data. Their method avoids singular covariance matrices in the subsets produced
after the splits (the covariance matrix is necessary to determine the discriminant function). In
addition, they proposed to use polar coordinate splits if spherical symmetry was detected on the
data.

Finding the splitting hyperplane is an optimization problem, and researchers can use their
favorite optimization algorithm. For example, Heath, Kasif, and Salzberg (1993) used simulated
annealing (SA) to find the hyperplane at each node. They showed that SA can produce small and
highly accurate trees in some domains. However, Heath et al. perturbed only one coefficient at a
time and used SA for a large number of iterations (their stopping criterion varied between 3,000 and
30,000 iterations without improvement), which may be inadequate for large data sets. We show in
this paper that it is not necessary to run SA for a long time to find acceptable solutions. Another
example of using a traditional optimization algorithm to induce oblique trees is the work of Brown,
Pittard, and Park (1996) who used linear programming repeatedly at each node of the tree. Their
approach is to find the hyperplane that best separates one of the classes from all the others (i.e.,
solve a two-class problem), compare these solutions with each other and with the univariate splits,
and select the best split to be used in the tree node. Brown et al. showed that this method produces
more accurate and smaller trees than CART-LC on parity problems.

Murthy, Kasif, and Salzberg (1994) introduced OC1, which uses an ad-hoc combination of
hillclimbing and randomization. As in CART-LC, the hillclimber finds locally optimal values for
one coefficient at a time, although OC1 offers several variants to choose the order in which the
coefficients are optimized. The randomization component takes two forms: OC1 uses multiple
random restarts, and when hillclimbing reaches a local minimum, the hyperplane is perturbed in
a random direction. Murthy et al. present OC1 as an alternative algorithm that overcomes some
of the limitations of CART-LC. In particular, they claim that the deterministic nature of CART-
LC may cause it to get trapped in local minima, and that using randomization may improve the
quality of the DTs. In addition, OC1 produces multiple trees using the same data, and unlike
CART-LC, the time used at each node in the tree is bounded. They present experimental results
that demonstrate that OC1 outperforms CART-LC in several domains.

Other related work in this area includes the Linear Machine Decision Trees (LMDT) system (Ut-
goff & Brodley, 1991; Brodley & Utgoff, 1995). The LMDT algorithm is very different from the
other systems. Instead of using a test similar to Equation (1) at each node, the LMDT has a set
of R linear discriminant functions gi(X) = WT

i X and assigns class i ∈ {1, ..., R} to the instance
described by X = (x1, ..., xd) if ∀i, i 6= j, gi(X) > gj(X). The training algorithm changes the weight
vectors Wi according to a specific correction rule, and the tree is built recursively until all the
instances in a node belong to the same class. Although, EAs could also be used in combination
with LMDT to adapt the weight vectors, we do not address LMDT in this paper.

Some authors have proposed to build oblique decision trees optimizing criteria other than the
impurity of the splits. For example, Shah and Sastry (1999) choose the hyperplane that maximizes
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the separability of the subsets created by the split, and Bennett et al. (2000) maximize the distance
between the splitting hyperplane and the training data in a manner analogous to support vector
machines.

Evolutionary algorithms have been used to evolve decision trees, although most efforts have
been directed towards axis-parallel DTs. For example, Koza (1991) used a slightly modified version
of his basic genetic programming (GP) system (Koza, 1992) to evolve DTs. GP does not use the
normal top-down recursive partitioning method of other algorithms. Instead, GP works with a
set of trees and performs operations inspired by sexual recombination and gene mutations to alter
the structure of the trees. GP uses the accuracy of each tree on the training set to evaluate their
fitness, and those trees with higher fitness are selected for future processing.

Folino, Pizzuti, and Spezzano (1999) also used GP to induce axis-parallel DTs, but used a
spatially-distributed population model that can be easily parallelized. They later extended their
algorithm with a selection method that sometimes accepts less fit individuals in a manner analogous
to simulated annealing (Folino, Pizzuti, & Spezzano, 2000). Nikolaev and Slavov (1998) proposed
a different fitness evaluation procedure that attempts to reduce the difficulty of the search and
guarantee the parsimony of the solutions.

Closer to our interests, Bot and Langdon (2000) used genetic programming to induce oblique
DTs. Their experiments with four small UCI data sets showed that sometimes GP can find oblique
trees that are as accurate as those found by C5.0 and OC1. When care was taken to restrict the
size of the trees (a common problem in GP), the resulting trees were five to ten times smaller than
those of C5.0 and OC1.

GP appears well suited to the DT induction task because it operates directly on entire trees,
but the major disadvantage of GP is its long execution time. Although it is possible to improve
GP’s performance (Bot, 2000), our approach uses fixed-length EAs to optimize the split at each
node.

3. Evolutionary Oblique DTs

At the heart of all traditional DT inducing algorithms there is an optimization task. In traditional
‘top-down’ induction of decision trees (Quinlan, 1986), this task is performed at each node of
the tree, then the data is partitioned into subsets, and the algorithm is applied recursively to
each subset. As we saw in the previous section, several algorithms have been used to solve this
optimization problem for both axis-parallel and oblique trees. We propose to use evolutionary
algorithms to optimize the splitting criteria. We believe that EAs are a promising technique to
build oblique trees for several reasons:

More sophisticated optimizers. EAs are not limited to considering one coefficient at a time
(unlike CART-LC and OC1), and it is likely that EAs find better splits than the simple
greedy hillclimbers that are currently in use.

No need for optimal splits. Finding the best split at each node does not guarantee that the
best tree will be found. After all, most of the algorithms attempt to optimize a heuristic
measure of the impurity of the split. Therefore, there is no need to run the EAs (or any other
optimizer, for that matter) until they find the best solution that they can. It is well known
that EAs quickly improve on the initial solutions, and so we may use the best hyperplanes
found after just a few iterations.

Scalability to high dimensional spaces. The dimension of the search space is defined by the
number of attributes that describe each instance. In practice this can be a large number, and
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the execution time of some existing DT algorithms may not scale up well. In contrast, EAs
have been shown to have good scalability to the dimensionality of the problem (Mühlenbein
& Schlierkamp-Voosen, 1993; Harik et al., 1999).

Use of problem-specific knowledge. There are numerous opportunities to incorporate knowl-
edge about the DT-inducing problem into the EAs. For instance, real-valued encodings and
operators seem natural to represent and manipulate hyperplanes. In addition, it is well known
that seeding the initial population of the EA with known ‘good’ solutions can enhance the
quality of the search and shorten the execution time. For example, we could use axis-parallel
hyperplanes or oblique solutions based on linear discriminant functions.

Hybridization. Most DT algorithms use a local optimizer that is well tuned to the tree induction
task, and combining the local optimizer with the EA could boost performance significantly.

Tolerance to noise. More efficient EA-based DT inducers may be obtained by approximating
the fitness of a hyperplane by using a small random sample of instances to evaluate the split.
This approximation would assign different fitness values to the same hyperplane every time
that it is evaluated, but EAs are tolerant to such noisy fitness evaluations (Grefenstette &
Fitzpatrick, 1985; Miller & Goldberg, 1996a).

Parallel implementations. It is straightforward to implement EAs on parallel computers (Cantú-
Paz, 2000), and the expected performance improvements are very promising.

Amenability to create ensembles. Since EAs are stochastic algorithms, they produce a differ-
ent tree every time that they are run on the same data set. These trees can be easily combined
into ensembles where the classification of an example is determined by the (possibly weighted)
vote of all the trees. It is well known that ensembles of classifiers usually have a lower error
rate than single classifiers (Bauer & Kohavi, 1999; Opitz & Maclin, 1999; Dietterich, 2000).

This paper does not consider hybrids or parallel implementations, but we use knowledge about
the problem in our choice of encoding and operators and to seed the initial population. In the
experiments described below, the EAs were run for a fixed number of iterations that, in many
cases, were not enough for the EA to converge to a unique solution or to find the best hyperplane
that it could, but that were sufficient to reach acceptable solutions. In addition, we performed
experiments to explore the scalability of EAs to the dimensionality of the problem, their sensitivity
to random sampling, and to produce ensembles with better accuracy than single trees.

4. Experiments

To demonstrate the feasibility of using EAs to search for oblique partitions, we conducted four sets
of experiments. In the first set, we used public-domain data sets from the UCI repository. We
included the four data sets that Murthy et al. (1994) used to evaluate OC1 to compare our results
with theirs. Next, we used artificial data with known properties, and we performed experiments
to study the scalability of the different algorithms to the dimensionality of the domain. We also
experimented with larger data sets to illustrate how sampling may help to scale up the evolutionary
approach to more realistic situations. Finally, we present experiments with ensembles.

We extended the publicly-available source code of OC1 to find oblique partitions using two
different EAs and our version of simulated annealing. The experiments compare the performance
of six algorithms:

1. OC1 limited to axis-parallel tests, which we call OC1-AP.
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2. OC1 with its default parameters.

3. CART-LC as implemented by Murthy et al. (1994) in the OC1 system.

4. OC1-ES, our extension to OC1 using evolution strategies.

5. OC1-GA, our extension to OC1 using genetic algorithms.

6. OC1-SA, our extension to OC1 using simulated annealing.

OC1-ES, our first extension to OC1, uses a (1+1) evolution strategy with self-adaptive muta-
tions. The candidate hyperplane is represented as a vector of real-valued coefficients, a1, ..., ad+1.
The initial hyperplane is the best axis-parallel split found by OC1. For each hyperplane coefficient
there is a corresponding mutation coefficient σi, i = 1, ..., d + 1, which is initially set to 1. At each
iteration, t, the mutation coefficients are updated and a new hyperplane is obtained according to
the following rule:

ν = N(0, 1)

σt+1
i = σt

i exp(τ ′ν + τN(0, 1))

at+1
i = at

i + σt+1
i N(0, 1),

(2)

where N(0, 1) indicates a realization of a unit normal variate, τ =
(√

2
√

d
)−1

, and τ ′ =
(√

2d
)−1

.
The ES was stopped after 1000 iterations.

Our second extension to OC1 uses a simple generational GA with real-valued genes (OC1-GA).
For the experiments, the GA used pairwise tournament selection without replacement, uniform
crossover with probability 1.0, and no mutation. The population size was set to 20

√
d, along

the lines of a population-sizing theory that proposes that the population size required to reach a
solution of a particular quality is O(

√
d) (Harik et al., 1999). The best axis-parallel hyperplane

was copied to 10% of the initial population, and the remainder of the population was initialized
randomly with coefficients ai ∈ [−200, 200]. The GA was stopped after 25 generations.

Our simulated annealing algorithm (OC1-SA) is different from the one that Heath, Kasif, and
Salzberg (1993) used. Their algorithm modified only one coefficient at a time and they let the
algorithm run for a large number of iterations to try to reach a global optimum. Since in our
preliminary studies (Cantú-Paz & Kamath, 2000) we had success with evolutionary algorithms
that may change all the coefficients simultaneously, we decided to try a simple SA algorithm with
the same characteristic.

Our SA begins with a temperature of 1, and the initial hyperplane is the best axis-parallel
solution found by OC1. The inner loop of the algorithm consists on perturbing the hyperplane
by adding independent unit normal variates to each of the coefficients. The new hyperplane is
evaluated and accepted as the current solution if it is better than the previous one or if it is worse
with a probability exp(−δ/T ), where δ is the difference between the qualities of the hyperplane
before and after it was perturbed and T is the temperature. This inner loop is repeated for 50d
iterations or until 10d hyperplanes are accepted. The temperature is then reduced by half and the
process is repeated 20 times.

We used the same parameters for all the data sets, and the parameters were calibrated with a
few runs using two data sets (Diabetes and LS10, which will be described later) that were chosen
mainly because they are not too large, and because one of them (LS-10) is completely separable by
oblique hyperplanes. We did not spent much time adjusting the parameters of the algorithms, and
it is probable that we could have obtained higher accuracies or smaller trees in shorter times by
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Name Task Description Attributes No. of Instances
Cancer Diagnose a tumor as benign or malignant 9 683

Diabetes Detect presence of diabetes 8 768
Glass Identify type of glass 10 214

Housing Predict housing values in suburbs of Boston 12 506
Iris Classify type of iris 4 150

Vehicle Identify vehicle silhouettes 18 846
Vowel Identify spoken vowels 10 990

Table 1: Descriptions of the small public domain data sets used in the experiments.

tuning the parameters to each data set. Note, however, that in contrast with OC1 and CART-LC,
the algorithms that we introduced (OC1-SA, OC1-GA, and OC1-ES) consider the dimensionality
of the problem to set their control parameters or to generate new candidate solutions.

The execution times were measured on a 500 MHz Pentium III PC with 128 Mb of RAM running
NT 4.0. The programs were compiled with the ecgs compiler version 2.91 using -O optimizations.

All experiments measure the impurity of a split at each tree node using the twoing rule (Breiman
et al., 1984), which is the default in OC1:

impurity =
NL

N

NR

N

(
k∑

i=1

Li

NL
− Ri

NR

)2

, (3)

where NL and NR are the number of examples on the left and right of split; N is the total number
of examples under consideration at a node; Li and Ri are the number of examples of category i
on the left and right of the split. For the evolutionary algorithms, the impurity was used without
modification as the fitness of the hyperplanes.

4.1 Small Data Sets

The first round of experiments used small public domain data sets, which are available at the UCI
machine learning repository (Blake & Merz, 1998). The data sets are briefly described in Table 1,
and have been used in numerous studies of machine learning and data mining algorithms. For our
comparison, we followed the experimental procedure that Murthy et al. (1994) used to compare
OC1 to other DT inducers: we used the standard parameters of OC1, and the results presented
are the average of ten five-fold cross-validation experiments. We report the percentage of instances
classified correctly, the size of the tree measured by the number of leaves, and the execution time
of the program measured in seconds, along with 95% confidence intervals for each result.

The results are summarized in Figure 1. The data used to produce the graphs is presented
in Appendix A. For most data sets, the differences in the accuracy of the algorithms was small,
although in most cases the AP trees were significantly less accurate than the best trees. For six data
sets, OC1-SA and OC1-ES found trees that are the most accurate or statistically indistinguishable
from the most accurate, followed by OC1 and OC1-GA with five top trees each. In terms of tree
size, OC1 found most of the smallest trees. The average size of the trees found by the GA and
ES-augmented inducers was close to the axis-parallel algorithm. The most noticeable differences
were in execution times: the EAs were on average approximately 3 times faster than OC1 and
about 5 times faster than OC1-SA, but much slower than OC1-AP and CART-LC. On average,
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Figure 1: Results comparing algorithms on small public-domain data sets.
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Figure 1: Results comparing algorithms on small public-domain data sets (cont.).
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CART-LC was the fastest oblique tree algorithm on these data sets, but it found top performing
trees less often than the other oblique algorithms.

Our results on Cancer, Iris, Housing, and Diabetes are similar to those obtained by Murthy
et al. (1994). The differences are not significant and may be due to the difference in hardware,
operating system, or compiler between our study and theirs. Using simulated annealing, Heath,
Kasif, and Salzberg (1993) reported accuracies of 94.9%, and 94.7% on the Cancer and Iris data
sets, respectively, while our OC1-SA found trees with accuracies of 93.5% and 96.3%. We presume
that our version of SA is faster than theirs because it evaluates far fewer hyperplanes per node, but
we cannot make precise comparisons since they did not report execution times (and our hardware
is probably very different from theirs).

4.2 Artificial Data

The next set of experiments used three artificial data sets. The purpose of these experiments is
to ensure that the target concept matches the bias of the algorithms—the classes are separable by
oblique hyperplanes, so we expect the AP trees to perform poorly on these data sets. In addition,
we performed experiments to explore the scalability of the algorithms as the number of attributes
was varied. Similar data sets were also used by Murthy et al. (1994) in their evaluation of OC1,
but we used these data sets to study different properties of the algorithms.

The first artificial data set has 2000 instances divided into two classes. Each instance has d
attributes whose values are uniformly distributed in [0,1]. The data is separable by the hyperplane
x1 + ... + xd/2 < xd/2+1 + ... + xd, where d ∈ {10, 20, 50, 100}. These data sets are labeled LS10,
LS20, LS50, and LS100 according to their dimensionality.

We followed the same experimental procedure as in the previous experiments, and the results
are summarized in Table 2. In the table, the results highlighted in bold are the most accurate and
those that are not significantly different (with 95% confidence) from the most accurate.1 In this
case, OC1-AP consistently found the least accurate and largest trees. As expected, OC1-AP was
the fastest algorithm, but its accuracy was too low to consider AP trees competitive (consider that
random guessing would result in a 50% accuracy and the accuracy of OC1-AP on LS100 is 56%).
Our OC1-SA produced accurate and very small trees for LS10 and LS20, but in higher dimensions its
performance dropped below the EA-augmented inducers, and it took the longest time at dimensions
higher than 20. Murthy et al. (1994) reported that Heath’s (1993) SA algorithm is 95.2% accurate
on LS10 (and LMDT obtained 95.2%). OC1-GA performed well at low dimensions and became the
top performing algorithm at high dimensions. However, its execution time increased faster than
OC1-ES, which appears to scale well to the increase in dimensionality, although it never found a
top performing tree. The size of the trees found by OC1 and CART-LC increases with the number
of dimensions, but those of OC1-GA, OC1-ES, and OC1-SA remained relatively small. However,
consider that the ideal tree for this domain has two leaves and all the algorithms found much larger
trees (except for OC1-SA on LS10 and LS20).

The second and third artificial data sets, POL2 and RCB2, represent concepts that are supposed
to be more difficult to learn than the LS problems (Murthy et al., 1994). POL2 and RCB2 are
defined in 2 dimensions (x1, x2 ∈ [0, 1]), and depicted in Figure 2. The concept represented by the
POL2 data is a set of four parallel oblique lines (hence its name), it contains 2000 instances divided
into two classes. The “rotated checker board” (RCB2) data also has 2000 instances, but in this
case they are divided into eight classes. We used the same experimental setup as before, and the
results are summarized in Table 3.

1. Our results with the LS10 data are different from Murthy et al.’s because we used OC1’s default pruning option
(using 10% of the data), but they did not prune the resulting trees.
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Dim. OC1-AP OC1 CART-LC OC1-SA OC1-GA OC1-ES
Accuracy 73.0±0.9 97.1±0.2 96.0±0.9 99.4±0.1 95.4±0.4 93.7±0.5

10 Leaves 86.7±9.7 5.3±1.3 5.9±2.1 2.0±0 8.8±2.3 9.9±1.6
Time 1.6±0.0 170.9±7.0 16.8±0.7 28.0±1.9 36.3±2.3 29.8±1.4

Accuracy 64.4±0.5 88.5±0.7 87.3±1.1 96.3±0.9 92.0±0.4 87.0±0.6
20 Leaves 71.5±17.0 5.9±1.6 9.3±2.1 3.3±0.8 9.8±3.5 14.4±3.3

Time 3.5±0.1 391.5±9.8 54.9±2.1 154.7±15.1 101.5±2.8 65.1±2.0
Accuracy 58.6±0.6 72.5±0.8 66.3±0.6 79.8±1.3 85.2±0.6 78.5±0.9

50 Leaves 58.0±12.2 10.0±2.1 25.0±10.4 15.6±2.9 9.5±3.3 16.3±5.5
Time 11.7±0.3 608.7±19.3 113.9±2.1 1278.6±51.2 333.3±13.0 163.9±8.7

Accuracy 56.1±0.5 61.8±0.6 58.5±0.7 70.6±0.7 75.9±0.6 70.1±0.9
100 Leaves 37.7±9.1 28.5±7.4 36.2±12.3 17.6±4.8 13.9±3.8 13.8±2.8

Time 30.9±0.3 802.6±12.2 156.3±6.7 5020.4±187.9 900.1±7.9 296.9±17.4

Table 2: Comparison of different algorithms on the LS artificial data sets.

Figure 2: The POL2 and RCB2 data sets.

In these two domains, OC1 produced the most accurate and smallest trees. The smallest trees
for POL2 and RCB2 have five and eight leaves, respectively, and OC1 consistently found trees of
those sizes. As expected, the axis-parallel trees are the largest and least accurate, but OC1-GA
found only slightly more accurate and smaller trees. The fastest oblique DT algorithm was CART-
LC, but its accuracy is lower than OC1 and OC1-ES. Both of the EA inducers were approximately
eight times faster than OC1, but in these two problems the overall performance of OC1-ES was
much better than OC1-GA.

Murthy, Kasif, and Salzberg (1994) reported that LMDT and Heath’s (1993) SA algorithm
obtained accuracies of 89.6 and 99.3% in POL2 and 95.7 and 97.9% on RCB2.
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Data set OC1-AP OC1 CART-LC OC1-SA OC1-GA OC1-ES
Accuracy 94.2±0.3 99.6±0.07 97.6±0.3 99.0±0.2 95.2±0.2 94.2±0.4

POL2 Leaves 77.7±6.1 5.0±0 14.4±1.7 10.3±1.5 57.5±6.1 6.3±0.6
Time 0.3±0.01 36±1.3 2.7±0.1 8.1±0.5 4.7±0.2 4.5±0.2

Accuracy 92.8±0.2 99.0±0.07 94.4±0.2 97.9±0.2 93.8±0.4 98.1±0.2
RCB2 Leaves 85.7±4 8.4±0.2 50.6±4.2 17.5±2.4 64.6±5.7 10.9±1.1

Time 0.4±0.01 44.8±0.9 3.4±0.1 10.0±0.3 5.0±0.1 6.0±0.2

Table 3: Comparison of different algorithms on the 2D artificial data sets.

4.3 Larger Data Sets and Sampling

To study the problem of scalability to larger data sets, we experimented with three larger data
sets, which are also available at the UCI ML repository. With these data sets, we illustrate a more
realistic application of EAs to the problem of oblique DT induction. The larger size of the training
set could cause fitness evaluations to be prohibitively expensive, and therefore we seek to obtain
faster approximate evaluations by sampling the training set.

We consider two ways of sampling. The first is a preprocessing step in which the training set
is sampled once at the beginning of an experiment. This static sampling ignores all the instances
that were not selected originally, possibly wasting valuable information. However, static sampling
is valuable because it simulates a situation when not much data is available for training, which
is often the case in many scientific domains. The second way of sampling is to choose a fraction
of the training instances each time a hyperplane is evaluated. This dynamic sampling method is
slightly more expensive than sampling statically once per experiment, but it may be advantageous
especially when samples are small, because numerous hyperplanes are evaluated in every tree node
and the sampling will eventually consider all the available labeled instances.

Evaluating the hyperplanes with dynamic samples also means that every time a particular hy-
perplane is evaluated, its fitness estimate is different. Repeated evaluations of the same hyperplane
would enable us to better estimate its true fitness (e.g., by taking the average of multiple eval-
uations), and some recent theory could be used to determine the optimal number of repetitive
evaluations that would minimize the execution time of the GA (Miller & Goldberg, 1996a). As a
first cut, however, we decided to use a single evaluation as a crude—but fast—estimate of fitness.

The experiments in this section used two handwritten digit recognition data sets. The objective
is to identify the instances as one of 10 digits. The first data set is the optical digit recognition data
set, which has 3823 instances in a training set and 1797 in a test set; each instance is described by
64 numeric attributes. The second data set is the pen-based set that has 7494 training cases and
3498 testing cases; each instance is described by 16 numeric attributes.

The results on the optical recognition set with dynamic sampling are summarized in Figure 3.
The data used to generate the plots is in Appendix A. In this case, we report the average of 10
experiments, with training and testing using the partition of the instances as in the UCI repository.
The algorithms used the same parameters as before. As expected, sampling decreased the execution
time as desired, but it also affected the accuracy. For all the sample sizes, OC1-GA found the
smallest and most accurate classifiers, and in most cases it was faster than the original oblique
OC1. OC1-ES was the fastest of the oblique classifiers, and in most cases its accuracy was better
than OC1, CART-LC and OC1-SA, but not as good as OC1-GA. Note, however, that the axis-
parallel OC1 was the fastest algorithm, and that its accuracy was similar to OC1-ES. In fact, using
OC1-AP with the entire data set was faster and more accurate than OC1-GA on 10% samples, so
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Figure 3: Comparison of different algorithms on the optical digit recognition data sampling dynam-
ically (5%–100% of the data at each node) every time that a hyperplane is evaluated.
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Figure 4: Comparison of different algorithms on the pen digit recognition data sampling dynami-
cally (5%–100% of the data at each node) every time that a hyperplane is evaluated.
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if the end user does not care about the relatively small differences in accuracy, axis-parallel DTs
would be a good choice in this domain. If accuracy or tree size is a premium, then OC1-GA would
be the best option.

In separate experiments we found that dynamic sampling gave more accurate results than
sampling statically at the beginning of the experiments. For static samples of 25% or more of the
training set, the accuracy was only slightly lower than with dynamic sampling (≈ 4 − 5%), but
for smaller static samples, the accuracy was between 6 to 22% lower. The general trends were the
same as with repetitive sampling, so we omit those results.

Figure 4 summarizes the results with the pen-based data. The data used to generate the plots is
in the Appendix. Again, OC1-GA found top trees in all of the sample sizes. OC1-ES also performed
well finding top trees in four cases and in less time than all the other oblique algorithms.

4.4 Ensembles

One way to increase the accuracy of randomized classification algorithms is to combine their in-
dividual decisions to classify new examples. In this section, we show experimental results with
ensembles that combine the decisions of the oblique trees using simple majority voting.

The experiments used the optical and pen digit recognition data sets that we used in the
previous section. We performed several sets of experiments with each data set. First we used
all the data available to build the individual trees, expecting that this would produce the most
accurate ensembles. However, since the cost of building the ensemble is a multiple of the cost of
building individual classifiers, we also expected that this option would be the most expensive. Since
the last section showed that sampling can reduce the execution time, we also built ensembles by
sampling at each node of the tree. Sampling is an additional source of randomization that permits
us to build ensembles using the deterministic axis-parallel and CART-LC algorithms.

The experiments consider ensembles of ten trees; the algorithms used the same parameters;
and the training and testing sets were the same as in previous sections. The OC1 code was easily
modified to handle ensembles. The results presented in Tables 4 and 5 are the average of ten
trials with each configuration. Note that when all the data was used, the deterministic algorithms
produced ensembles of ten identical trees that have exactly the same performance as the individual
trees, but those results are included here to facilitate comparisons.

As expected, the ensembles created with all the data have better accuracy than the individual
classifiers (compare Tables 7 and 8 with Tables 4 and 5, respectively). Perhaps it is more interesting
to note that some of the ensembles created by sampling also had higher accuracy than the most
accurate individual trees, and that sometimes the ensembles were created in shorter time. For
example, on the optical digit data, building an ensemble with OC1-ES and sampling at 10% gave
a higher accuracy (91.6%) than any single classifier built from the entire data, and that it was
faster to build the ensemble than the most accurate single tree. Actually, the ensembles generated
by OC1-GA and OC1-ES on 5% samples were more accurate (89.6% and 89.5%, respectively)
and faster to generate (83 and 55.2 seconds) than single trees found by the existing OC1 and
CART-LC algorithms on the entire data (86.4% and 88.2%; 298 and 77 seconds). The results
with the pen-based data are not as impressive, but still the ensembles created by ES with 10%
samples outperform the single trees found by OC1 and CART-LC. As in the previous section, the
degradation in accuracy as the sample fraction is reduced is smaller for OC1-SA, OC1-GA, and
OC1-ES than for OC1 and CART-LC.
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% Sample OC1-AP OC1 CART-LC OC1-SA OC1-GA OC1-ES
5 Accuracy 86.6±0.6 59.9±2.3 38.6±1.8 87.9±0.6 89.6±0.5 89.5±0.3

Time 7.7±0.6 78.5±1.5 7.9±0.7 1766.5±10.2 83.0±1.7 55.2±1.5
10 Accuracy 88.6±0.4 76.2±1.2 63.2±2.1 90.8±0.2 92.3±0.4 91.6±0.6

Time 8.7±0.6 154.2±4.9 11.1±0.8 3125.0±15.0 151.7±2.8 78.5±1.9
100 Accuracy 84.5±1.1 93.9±0.2 91.1±0.6 95.8±0.3 95.6±0.2 94.9±0.3

Time 50.6±1.1 2806.6±21.3 708.0±34.3 13101±108 2272.4±23.5 622.1±7.7

Table 4: Results using ensembles of ten trees on the optical digit recognition data. The first line
is the accuracy and the second is the time.

% Sample OC1-AP OC1 CART-LC OC1-SA OC1-GA OC1-ES
5 Accuracy 79.9±0.5 66.1±1.8 50.2±3.4 80.0±0.3 80.4±0.5 81.0±0.6

Time 5.1±0.2 79.2±2.1 59.5±0.9 290.1±1.9 54.3±0.8 26.9±0.7
10 Accuracy 81.0±0.3 74.6±0.5 62.0±3.1 84.1±0.3 83.5±0.4 84.2±0.2

Time 6.5±0.5 188.5±3.3 90.3±1.2 567.9±3.8 101.8±1.5 46.7±1.1
100 Accuracy 81.1±0.6 86.8±0.1 82.8±0.4 87.4±0.1 87.1±0.1 87.3±0.1

Time 17.1±0.4 3677.8±34.8 403.1±20.2 2921.0 35.5 796.4±9.1 367.0±3.6

Table 5: Results using ensembles of ten trees on the pen digit recognition data. The first line is
the accuracy and the second is the time.

4.5 Summary of Results

Figure 5 shows scatter plots that summarize the accuracy of the trees found by OC1-GA and OC1-
ES against the other algorithms on all the data sets used in the previous sections. For each point
(x, y), x represents the accuracy obtained by OC1-GA or the OC1-ES and y represents the accuracy
of the other method. The points above the diagonal indicate that the other method outperforms
the evolutionary algorithms. The plots show that in only a few cases the other methods (mainly
OC1-SA and CART-LC) found more accurate trees than the evolutionary algorithms.

Figures 6 and 7 show similar comparisons for the execution time and the number of leaves. In
these graphs, points below the diagonal indicate that the other method outperformed the EAs. We
can see that OC1-AP and CART-LC were generally faster than the evolutionary algorithms, and
that OC1-SA and OC1 tended to be slower but found smaller trees than the EAs.

5. Summary and Conclusions

Traditional DT inducers use some form of heuristic greedy search to find appropriate splits. In
this paper, we substituted the greedy search with two evolutionary algorithms: a (1+1) evolution
strategy and a simple GA. We experimented with public domain and artificial data sets with dif-
ferent characteristics to evaluate the performance of the EA-based tree inducers, and we compared
the results against an axis-parallel and three other oblique algorithms. We evaluated the use of
sampling to further reduce the execution time of the inducers. As expected, sampling resulted in
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Figure 5: Comparison of accuracy rates of the GA and the ES against the other algorithms.
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faster training times, but also in a loss of accuracy, which was more pronounced in the existing
oblique algorithms. In addition, we introduced new methods to generate ensembles of trees.

Our results suggest that in many cases, the EAs are capable of finding oblique trees with
similar or higher accuracy than existing algorithms, and that this can be done at a competitive
cost. The experiments also suggest that the EAs scale up better than traditional methods to the
dimensionality of the data. The evolutionary trees seem to perform better than existing methods
when they use samples of the training set. This is important because these algorithms can be used
confidently on large data sets where small samples may be required to reach a solution quickly.
In addition, creating ensembles with the evolutionary algorithms results in higher accuracy than
single trees produced by existing methods, and in some cases the cost of generating the ensemble
may be lower than generating a simple tree of similar accuracy if sampling is used.

This paper is only a first step in the application of EAs to oblique DT induction, and there are
multiple opportunities to expand our work. In particular, we should continue the study of scalability
using larger data sets (both artificial and ‘real-world’), and experiment with other algorithms such
as (µ, λ)-ES. Also, the knowledge about the tree induction problem should be exploited by designing
specialized operators and by combining EAs with local hillclimbers.
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Appendix A

The tables show the results of experiments summarized in the paper as graphs. The results high-
lighted in bold are the most accurate and those that are not significantly different (with 95%
confidence) from the most accurate.
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Data set OC1-AP OC1 CART-LC OC1-SA OC1-GA OC1-ES
Accuracy 94.7±0.4 96.1±0.6 95.9±0.3 93.5±0.5 94.3±0.4 95.2±0.5

Cancer Leaves 9.4±1.5 3.3 ±0.6 5.5±1.4 11.5±4.2 11.1±2.2 5.2±2.1
Time 0.2±.002 28.4±5.13 1.2±0.1 12.5±0.5 7.8±0.5 5.1±0.2

Accuracy 74.0±0.6 74.1±1.16 72.7±1.06 73.9±0.7 73.9±0.95 73.7±0.8
Diabetes Leaves 18.9±5.1 15.7±1.24 3.7±4.58 19.0±6.7 20.0±6.13 17.1±2.9

Time 0.4±0.01 33.0±0.84 2.7±0.06 13.0±0.1 14.3±0.27 14.0±0.2
Accuracy 67.1±0.9 64.1±1.8 66.8±1.3 65.7±1.8 65.9±1.8 66.4±2.1

Glass Leaves 19.3±4.1 14.5±3.6 15.2±3.1 19.5±4.6 17.2±3.3 18.1±3.4
Time 0.1±.008 7.4±0.2 0.6±0.02 19.1±0.5 4.1±0.1 3.8±0.1

Accuracy 82.2±0.6 82.7±1.1 82.3±0.8 82.8±0.7 82.9±0.5 82.8±0.6
Housing Leaves 10.0±3.8 7.3±1.5 11.5±1.6 11.6±3.3 13.5±3.2 11.5±3.3

Time 0.3±.01 19.8±0.7 2.1 ±.08 70.2±2.9 8.7±0.2 8.6±0.2
Accuracy 93.9 ±0.5 95.3±0.7 93.8±0.7 96.3±0.4 94.5±0.4 95.8±0.5

Iris Leaves 5.0 ±0.7 3.6±0.2 4.2±0.5 3.4±0.3 4.6±0.5 3.7±0.03
Time 0.03 ±0.004 1.1±0.4 0.1±.006 0.9±0.1 0.5±0.02 0.5±0.03

Accuracy 68.7±0.7 69.4±0.5 68.2±0.8 70.3±0.7 69.6±0.7 69.3±0.7
Vehicle Leaves 38.9±9.5 37.1±7.9 40.2±6.7 31.6±4.8 44.2±9.2 40.0±6.1

Time 0.8±0.01 72.5±1.7 6.5±0.1 290±7.6 37.7±0.7 23.3±0.5
Accuracy 79.2±1.2 80.1±0.7 76.8±2.2 83.1±0.8 82±1.03 80.6±1.05

Vowel Leaves 111±5.3 64.8±2.6 89.8±4.8 45.7±3 86.2±2.5 82.4±2.8
Time 1.3±0.01 100.4±0.6 128.4±60 129±1.9 31.3±0.5 20.8±0.3

Table 6: Comparison of different algorithms on the small public domain data sets.

% Sample OC1-AP OC1 CART-LC OC1-SA OC1-GA OC1-ES
Accuracy 71.8±0.6 37.9±2.6 28.3±2.6 67.7±0.8 78.1±1.2 71.1±1.4

5 Leaves 32.0±3.3 72.3±11.5 61.1±33.3 17.3±2.3 14.7±2.4 19.1±2.3
Time 0.7±0.0 8.1±0.2 7.3±0.4 173.8±6.2 8.4±0.3 5.8±0.2

Accuracy 76.9±1.4 50.2±1.5 36.9±4.0 74.8±1.1 82.7±0.8 77.5±1.3
10 Leaves 49.0±3.8 101.8±19.9 158.2±37.8 34.9±4.2 20.0±3.2 26.6±4.3

Time 0.9±0.0 16.2±0.3 11.8±0.7 310.9±11.8 15.2±0.3 8.7±0.4
Accuracy 81.2±0.9 69.6±1.1 62.3±2.6 81.0±1.5 87.2±0.5 82.9±1.1

25 Leaves 77.6±6.7 155.4±52.9 179.6±68.2 66.9±16.3 33.0±5.4 43.4±7.7
Time 1.7±0.0 52.1±1.7 26.7±1.9 755.0±19.9 37.1±0.5 17.6±0.2

Accuracy 83.0±0.7 81.2±1.0 75.1±1.6 83.2±1.0 88.6±0.7 84.7±0.8
50 Leaves 112.1±23.8 182.1±48.9 163.0±56.6 64.1±99.0 31.9±7.1 84.0±16.7

Time 2.9±0.1 126.6±2.4 62.1±5.3 1374.2±33.7 75.6±1.7 32.7±0.8
Accuracy 84.5±1.1 86.4±0.5 88.2±0.4 90.6±0.6 90.2±0.6 87.9±0.6

100 Leaves 125.8±28.3 53.7±18.0 60.6±15.2 38.2±10.0 52.3±20.3 84.0±22.1
Time 5.5±0.1 298.6±6.5 77.4±6.3 1305.0±33.9 144.2±2.6 63.0±1.9

Table 7: Comparison of different algorithms on the optical digit recognition data sampling dynam-
ically (5%–100% of the data at each node) every time that a hyperplane was evaluated.
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% Sample OC1-AP OC1 CART-LC OC1-SA OC1-GA OC1-ES
Accuracy 72.8±1.1 47.0±3.8 28.0±3.1 72.4±0.7 73.6±1.7 74.4±1.3

5 Leaves 53.2±9.6 111.3±18.7 270.7±15 20.3 1.2 20.0±2.6 21.8±2.0
Time 0.5±0.001 8.4±0.2 6.1±0.2 28.9±0.8 5.4±0.2 2.8±0.0

Accuracy 76.2±0.8 62.2±1.7 41.5±3.0 77.7±1.2 78.9±0.7 78.5±1.0
10 Leaves 75.2±13.0 161.9±27.5 430.8±17.2 27.9±2.1 25.4±4.1 29.4±2.4

Time 0.6±0.01 19.9±0.5 9.2±0.3 57.0±1.5 10.3±0.3 4.9±0.1
Accuracy 79.0±0.5 73.4±0.8 66.2±2.3 81.2±0.6 81.3±0.6 82.1±0.5

25 Leaves 123.7±26.8 374.9±95.0 329.4±12.4 34.9±3.2 52.3±6.8 48.1±7.3
Time 0.8±0.02 69.2±1.5 17.0±0.6 141.6±3.2 26.2±0.6 12.1±0.3

Accuracy 79.9±0.6 78.6±0.7 74.0±0.7 82.3±0.6 83.8±0.5 82.3±0.6
50 Leaves 136.6±19.6 495.7±53.4 443.1±14 49.9±49.0 62.7±9.5 68.3±11.1

Time 1.2±0.02 168.2±3.3 34.3±3.8 287.6±18.8 54.1±0.8 24.4±0.7
Accuracy 81.1±0.6 83.6±0.4 82.8±0.5 85.0±0.4 84.2±0.5 84.6±0.3

100 Leaves 197.0±29.3 77.9±11.6 106.7±16.0 50.7±7.0 97.1±20.9 91.4±11.3
Time 1.9±0.02 362.8±5.6 40.7±2.0 288.4±7.4 80.6±2.0 37.5±1.5

Table 8: Accuracy of different algorithms on the pen-based digit recognition data sampling dynam-
ically every time that a hyperplane is evaluated.
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